新匍京娱乐场最全网站-app下载手机版
概况
概况

概况

采用系统级方法为小型LCD中的LED背光供电是值得的,电容器组中的顶端电容器充电至外部设定的输出电压

发布时间:2020-01-18 12:02    浏览次数 :

白光LED通常由一个恒定直流电流源驱动,以保持恒定的亮度。在采用单颗锂离子电池供电的可携式应用中,白光LED以及电流源上的电压降之总和可以比电池电压高或低,这意味着白光LED某些时候需要对电池电压进行升压。完成这样应用的最好办法是使用升压DC-DC转换器,这种方法大大地优化效率,但代价是成本和PCB面积增加。另外一种提升电池电压的方法是使用电荷帮浦,也称为开关电容转换器。本文将详细地分析这种组件的工作原理。  电荷帮浦的基本原理  电容是存储电荷或电能,并按预先确定的速度和时间放电的装置。如果一个理想的电容以理想的电压源VG进行充电(见图1a),将依据Dirac电流脉波函数立即存储电荷(图1b)。存储的总电荷数量按以下方式计算︰ Q = CVG  实际的电容具有等效串联阻抗(ESR)和等效串联电感(ESL),两者都不会影响到电容存储电能的能力。然而,它们对开关电容电压转换器的整体转换效率有很大的影响。实际电容充电的等效电路如图1c所示,其中RSW是开关的电阻。充电电流路径具有串行电感,透过适当的组件布局设计可以降低这个串行电感。  一旦电路被加电,将产生指数特性的瞬态条件,直到达到一个稳态条件为止。电容的寄生效应限制峰值充电电流,并增加电荷转移时间。因此电容的电荷累积不能立即完成,这意味着电容两端的初始电压变化为零。电荷帮浦就利用了这种电容特性,如图2a所示。  电压变换在两个阶段内实现。在第一个阶段期间,开关S1和S2关闭,而开关S3和S4打开,充电到输入电压:  VC1+ VC1- = VC1+ = VIN  VC1+ ─ VC1- = VOUT ─ VIN = VIN →VOUT = 2VIN  在第二个阶段,开关S3和S4关闭,而S1和S2打开。因为电容两端的电压降不能立即改变,输出电压突变到输入电压值的两倍︰使用这种方法可以实现电压的倍压。开关讯号的工作周期通常为50%,这通常能产生最佳的电荷转移效率。以下让我们更详细地了解电荷转移过程以及开关电容转换器寄生效应如何影响其工作。  图2b中显示了开关电容电压倍压器的稳态电流和电压波形。根据功率守恒的原理,平均的输入电流是输出电流的两倍。在第一阶段,充电电流流入到C1。该充电电流的初始值决定于电容C1两端的初始电压、C1的ESR以及开关的电阻。在C1充电后,充电电流呈指数级地降低。充电时间常数是开关周期的几倍,更小的充电时间常数将导致峰值电流增加。在这个时间内,输出电容C hold提供负载电流线性放电的电量,放电量等于︰  在第二阶段,C1+连接到输出,放电电流(电流大小与前面的充电电流相同)透过C1流到负载。在这个阶段,输出电容电流的变化大约为2IOUT。尽管这个电流变化应该能产生一个输出电压变化为2 Iout ESR C hold,使用低ESR的陶瓷电容使得这种变化可以忽略不计。此时,CHOLD按下面的电量线性电位充电︰如此一来,电荷帮浦的输出电压可以用以下的等式模仿︰  VOUT = 2VIN ─ Iout Rout  总之,因为陶瓷电容低的ESR以及高的开关频率,输出涟波以及输出电压降取决于开关电阻。利用更多的开关和电容可以实现附加的电压转换。图3展示了使用电容的这个特性的电路。同样的,电压转换在两个阶段内完成。在第一个阶段,开关S1到S3关闭,而开关S4到S8打开。因此C1和C2并联,假设C1等于C2,输出电容CHOLD提供输出负载电流。随着这个电容的放电,输出电压降低到期望的输出电压以下,第二个阶段是被激活来将输出电压增高到这个值以上。在第二阶段,C1和C2并联,连接在VIN和VOUT之间。开关S4到S7关闭,而S1到S3和S8打开。因为电容两端的电压降并不能突变,输出电压跳变到输入电压值的1.5倍︰  电压升压是透过以下的模式完成︰透过关闭S8并保持S1到S7打开,电压转换可以获得1倍的增益。  脉波频率调制(PFM)方案  图4种介绍了一种简化的PFM调压方案,该方案利用许多个增益。下调的输出电压透过PUMP/SKIP比较器与1.2V的电压基准比较。PUMP/SKIP比较器输出电压在启动时线性上升,提供软启动功能。当输出电压超过期望的极限,组件不会开启,消耗的电源电流将很小。在这种空闲状态的期间,输出电容提供输出负载电流。随着这个电容不断放电以及输出电压降低到期望的输出电压以下,电荷帮浦被激活直到输出电压再次达到高于这个值。  在轻负载下,PFM调节架构的主要优势是很明显的。通常透过输出电容提供负载电能。电源电流非常低,输出电容只需要偶尔透过电荷帮浦进行再次充电。  总之,调压电荷帮浦在一个宽的输入范围内不能维持高的效率,因为输入-输出电流比根据基本的电压转换进行调节,任何比输入电压乘以电荷帮浦增益所得的值更低的输出电压将导致转换器内额外的功耗,并且效率会成比例地降低。  转换器根据输入/输出比例改变增益的能力允许在整个输入电压范围内完成最优秀的效率。理想的情况是,增益应该是线性式变化。现实中,给予固定的电容和开关数量,只可能达到有限的增益配置。  在图4中,输入电压被调节,并被馈入到三个比较器的正向结点。比较器的所有反向结点连接到输出电压。根据输入-输出电压比,比较器的输出提供带有一个3位字的增益控制电路,增益控制电路用于选择最小的增益G,这样就可以获得期望的电压转换。然而,在白光LED应用中,选择正确的增益G不仅仅根据输入和输出电压。  高整合度电荷帮浦双显LED驱动器  以NS的LM27965电荷帮浦双显LED驱动器为例,D1A-5A或D1B-D3B输出可以连接在一起以较高的电流来驱动一个或两个LED。在这样的配置中,所有的五个并行电流输出可以驱动一个LED。应该选择设定用于D1A-5A的LED电流,这样可以设定每个输出电流为期望的总LED电流的20%。例如,如果60mA是期望中的单LED驱动电流,应该选择合适的RSET,这样透过每个电流吸收端的输入电流为12mA。可提供的二极管输出电流、最大的二极管电压以及电气参数表中提供的所有其它参数与标准的5-LED应用电路相同。  在较高的输入电压条件下,LM27965工作在直通模式(Pass-Mode),允许输出电压跟踪输入电压。随着输入电压不断降低,Dxx管脚上的电压也会下降(VDXX = VPOUT VLEDx)。一旦任何已激活的Dxx管脚达到接近175mV的电压时,电压帮浦将切换到3/2x的增益。这种切换确保不会因为在LED两端没有足够的电压余量而影响到流过LED的电流。第一组和第二组输出在每个Dxx管脚上利用了片上的LED正向电压检测功能以优化电荷帮浦增益,实现最大的效率。由于检测电路的特性,因此如果在正常操作期间将使用到任何一个LED组,不建议将任何DxA (D1A-D4A)或DxB (D1B-D2B)的管脚悬空。如果将DxA和/或DxB的管脚悬空,将会在整个VIN范围内迫使电荷帮浦进入3/2x模式。  如果D5A未使用,建议将驱动器管脚接地,并将通用缓存器的EN5A位设置为0以确保正确的增益转换。使用通用缓存器,D3B驱动器可以在工作中完全地开或关闭。激活二极管监测电路并禁止驱动器。如果D3B没有使用,建议将驱动器管脚接地,通用缓存器的EN3B位设置为0确保正确的增益转换。  结论  使用开关电容比基于电感的开关方法具有某些优势,其中一个明显的优势就是消除了电感以及相关的电磁设计问题。开关电容转换器通常具有相对低的噪音和最小的辐射EMI。此外,应用电路很简单,只需要几个小电容。因为在没有电感的情况下,最后的PCB组件高度通常比同等的开关转换器更小。编辑:妮子

图片 1

超级电容器在传统电容器和电池之间开拓了一个新兴市场。它们正在取代数据存储应用中的电池,这类应用需要大电流/持续时间短的备份电源,超级电容器也正用于各种高峰值功率应用,而这类应用需要大的电流突发或补充性电池备份。与电池相比,超级电容器具有提供更高峰值功率的能力,因此提供了更高的功率密度,而且它们外形尺寸小,在更宽的工作温度范围内有更长的充电周期寿命且具有更低的ESR。与标准陶瓷、钽或电解质电容器相比,超级电容器的外形尺寸和重量与其类似,但能量密度更高。通过降低超级电容器的Top-Off电压并避免高温(>50°C),可最大限度地延长电容器的寿命。上一代的两节超级电容器充电器是为用3.3V、3节AA或锂离子/聚合物电池实现小电流充电而设计的,因为这些IC采用升压型拓扑结构。不过,超级电容器技术的改进已经扩大了市场,产生了很多未必局限在消费电子产品领域的中到较大型电流应用。主要应用包括固态盘驱动器和海量存储备份系统,涵盖工业PDA和手持终端、数据记录仪、仪表、医疗设备等大电流便携式电子设备,以及各种“dying gasp”型工业应用,例如安防设备和报警系统。其他消费类电子产品应用包括那些有大功率突发的应用,如相机中的LED闪光灯、PCMCIA卡和GPRS/GSM收发器,以及便携式设备中的硬盘驱动器(HDD)。超级电容器充电器的设计挑战超级电容器有很多优点,不过,当两个或更多电容器串联叠置时,就给设计师带来了诸如容量平衡、充电时电容器过压损坏、吸取过大电流、大占板面积/解决方案等问题。如果需要频繁的大峰值功率突发,那么也许需要较大的充电电流。此外,很多充电电源也许是电流受限的,例如,在电池缓冲器应用中或在USB/PCCARD环境中。就空间受限、较大功率的便携式电子设备而言,应对这些情况至关重要。使串联连接的超级电容器达到容量平衡,可确保每节电容器上的电压近似相等,而超级电容器如果缺乏容量平衡,可能会导致过压损坏。就小电流应用而言,充电泵采用给每节电容器配一个平衡电阻器的外部电路,这是一种不算昂贵而又可解决这个问题的办法。正如下面说明的那样,平衡电阻器的值将主要取决于电容器的漏电流。为了限制平衡电阻器引起的漏电流对超级电容器能量存储的影响,设计师还可以选择使用一个电流非常小的有源平衡电路。容量失配的另一个原因是漏电流不同。电容器的漏电流开始时相当高,然后随时间推移衰减到较低的值。但是如果串联电容器之间的漏电流失配,那么电容器可能一开始再充电就会过压,除非设计师选择可在每个电容器上提供比电容器漏电流本身大得多的负载电流的平衡电阻器。平衡电阻器导致不必要的成份和永久性放电电流,加重了应用电路的负担。如果失配的电容器以大电流充电,它们也无法为每节电容器提供过压保护。就中到较大功率应用而言,另一个可解决超级电容器充电问题而且不算昂贵的方法是,采用一个电流受限的开关加分立器件和外部无源组件。采用这种方法时,电流受限的开关提供了充电电流和电流限制,同时电压基准和比较器 IC 提供电压箝位,最后,具平衡电阻器的运放(吸收/供应)实现超级电容器的容量平衡。然而,镇流电阻器的值越低,静态电流越高,电池运行时间越短,显然的好处是节省了费用。不过,这种解决方案实现起来非常笨重,而且性能充其量也就是略微好一点。上述满足超级电容器充电器IC设计限制的任何解决方案都必须与一个大电流充电器相结合,以用于具自动容量平衡和电压箝位的两节串联超级电容器。因此,凌力尔特公司开发了一款面向中到大功率应用的简单但先进的单片超级电容器充电器IC,该IC无需电感器、无需平衡电阻器、有各种工作模式并具有低静态电流。一种简单的解决方案LTC4425是凌力尔特的两节超级电容器充电器系列的新器件,用于在便携式和数据存储应用中满足大峰值功率、数据备份和“dying gasp”需求。该器件采用具热量限制的线性恒定电流、恒定电压架构,用锂离子/聚合物电池、USB 端口或2.7V至5.5V电流受限电源将两节串联的超级电容器充电至可编程的输出电压。LTC4425有两种工作模式:充电电流曲线(正常)模式和LDO模式。充电电流曲线模式用随输入至输出压差反向变化的充电电流,将超级电容器组中的顶端电容器充电至输入电压 VIN,而LDO模式以固定充电电流将,电容器组中的顶端电容器充电至外部设定的输出电压,该固定充电电流也是外部可编程的。充电电流可用电阻器编程至2A(3A峰值),而且每个电容器都受到内部分路器保护以免过压损坏(2.45V/2.7V 可选)。该IC内置的电流受限的理想二极管具有极低的50mΩ导通电阻,以防止VIN向后驱动,并使该器件适合于多种大峰值功率电池及USB供电设备、工业PDA、便携式仪表和监视设备、功率计、超级电容器备份电路以及PC卡/USB调制解调器。LTC4425的自动容量平衡功能保持两节电容器有相等的电压,从而无需容量平衡电阻器,同时保护每节超级电容器免受过压损坏,并最大限度地降低电容器上的漏电流。当输出电压处于稳定状态时,该IC以非常低的20uA静态电流工作,而且停机时仅从VIN和VOUT两者之中较高的一个吸取2uA电流。基本充电电路仅需要6个外部组件,是非常紧凑的。其他关键特点包括一个VIN电源失效指示器以及通过PROG引脚连续监视VIN至VOUT的电流。额外的保护功能包括:在温度过高情况下降低充电电流和热量限制,以及VIN至VOUT电流限制。LTC4425采用两种紧凑、耐热增强型封装:12 引线、扁平(高度仅为0.75mm)3mm x 3mm DFN封装,以及12 引线MSOP封装。该器件在-40°C至125°C结温范围内工作。LDO 模式在LDO模式时,通过FB引脚用一个外部电阻分压器网络设定输出电压(VOUT),该分压器网络由RFB1和RFB2组成,而充电电流通过PROG引脚用一个外部电阻器RPROG设定,参见图2所示方框图。充电器控制电路由一个恒流放大器和一个恒压放大器组成。当启动该IC以给一个已放电的超级电容器组充电时,最初恒流放大器起控制作用,并伺服PROG引脚电压至1V。通过PROG电阻器的电流乘以约为1,000 的检测MOSFET(MPSNS)和功率MOSFET(MPSW)之比,为超级电容器组充电。当输出电压VOUT接近设定值时,恒定电压放大器接管控制权,而且如果有必要则减少充电电流,以保持FB引脚电压等于一个1.2V的内部基准电压。因为PROG引脚电流始终约为充电电流的1/1,000,所以 PROG引脚电压持续指示实际充电电流,即使在恒定电压放大器起控制作用时也是如此。充电电流曲线(正常)模式当FB引脚短路到输入电压VIN时,LTC4425进入充电电流曲线模式。在这种工作模式时,恒定电压放大器从内部禁止,但是充电电流仍然通过外部RPROG电阻器设定。如果输入至输出电压差(VIN –VOUT)超过 750mV,那么充电器提供的电流是设定充电电流的1/10,以限制芯片内的功耗。当VOUT在250mV以内或较接近VIN时,随着这个电压差从750mV开始下降,充电电流线性增大至其满设定值。当VOUT进一步上升时,充电器FET两端的电压变得太低,以至于无法支持满充电电流。因此充电电流逐步降低,充电器FET进入三极管(符合欧姆定律的)工作区(参见图 3)。既然充电器FET RDS(ON)近似为50mΩ,那么在设定充电电流为2A时,FET将进入符合欧姆定律的欧姆区(三极管),且当VOUT与VIN相差约100mV以内时,充电电流将开始下降。电压箝位电路LTC4425配备的电路可将超级电容器组中两个超级电容器两端的电压限制到最高可允许电压VCLAMP。有两个通过SEL引脚可选的VCLAMP预置电压:2.45V或2.7V。就较低的2.45V VCLAMP电压而言,SEL引脚应该设定为逻辑低电平,而对于较高的2.7V VCLAMP电压,该引脚则应设为逻辑高电平。如果底端电容器两端的电压(即VMID引脚电压)先达到了VCLAMP,那么NMOS并联晶体管就接通,并开始从底端的电容器向地泄放电荷。类似情况,如果顶端电容器两端的电压(VTOP)先达到VCLAMP,那么PMOS并联晶体管就接通,并开始从顶端的电容器向底端的电容器泄放电荷。当任一超级电容器两端的电压达到与VCLAMP相差50mV以内时,互导放大器就开始线性地降低充电电流。到任一并联器件接通时,充电电流降至设定值的1/10,而且只要该并联器件接通,就保持这个值不变。这是为了防止并联器件被过大的热量损坏。控制并联器件的比较器有50mV的迟滞,这意味着,当任一电容器两端的电压降低50mV时,并联器件断开,并以满充电电流恢复正常充电,除非受到另一个控制充电器FET栅极放大器的限制。如果两个电容器都超过它们的最大可允许电压VCLAMP,那么主充电器FET完全关断,而且两个并联器件都接通。两个并联器件实际上是电流反射镜,保证分走比通过充电器FET的电流更大的电流。漏电流平衡电路LTC4425还配备了一个内部漏电流平衡放大器(LBA),该放大器使中点(即VMID引脚)电压准确地等于输出电压VOUT的一半。由于其受限的1mA供应和吸收能力,它被设计成用来处理由漏电流引起的超级电容器的轻微失配,而不是用来纠正由缺陷引起的任何严重失配。只要有输入电压存在,平衡器就工作。有了该内部平衡器,就无需外部平衡电阻器了。结论现在,超级电容器开始在诸多一度由电池掌控的应用中崭露头角。最初的应用只针对小电流,不过随着技术的进步,超级电容器的身影已经出现在消费类和非消费类市场上的多种中到大功率应用中。超级电容器与电池相比有很多固有的优点,如可提供较高的峰值功率、较长的周期寿命以及较小的外形尺寸。不过,采用超级电容器的产品设计师面临很多问题,如需要容量平衡以及潜在的超级电容器过压损坏。凌力尔特公司通过扩充创新的超级电容器充电器 IC 系列,已经满足了这些以及其他一些需求。LTC4425是一款2A线性充电器,该器件具自动容量平衡、电压箝位、各种工作模式以及小电流消耗。要构成一个可比较的解决方案,至少需要4个 IC(一个电流受限的开关用于电流限制、一个运放和电阻值很大的平衡电阻器用于低 Iq 自动容量平衡以及一个电压基准和比较器IC 用于调节和限制超级电容器电压)和一些无源分立组件。LTC4425具有小占板面积,有很多有用的功能,从而减小了总的解决方案尺寸,反过来又实现了更紧凑、更简单的设计。(end)

图4:降压转换器的充电阶段(图a)与放电阶段(图b)

本文详细介绍了开关电源(SMPS)中各个元器件损耗的计算和预测技术,并讨论了提高开关调节器效率的相关技术和特点。

图4:充电具有1x和1.5x增益的泵电路以这种方式,完成升压操作。开关信号的占空比通常为50%,因为该值通常会产生最佳的电荷转移效率。

图3:理想的LED电流波形

利用波形积分进行更准确的计算:

采用系统级方法为小型LCD中的LED背光供电是值得的。

利用软件工具实现更简化的解决方案磁滞降压转换器要采用EZ-Color,需要将用户模块嵌入到PSoCDesigner中,以便在芯片的模拟段与数字段之间进行切换。如图8所示,比较器用户模块放在连续时间模块中,9位DAC放在两个开关电容模拟块间,提供其负输入。比较器的正输入通过4:1的多路复用器路由,输出路由至比较器数字总线,再经过反相,抵消电平转换器电路的反相区(如图8所示)。比较器数字总线发送数字信号至芯片的数字段,也是数字信号走线的地方(如图9所示)。

电感功耗包括线圈损耗和磁芯损耗两个基本因素,线圈损耗归结于线圈的直流电阻(DCR),磁芯损耗归结于电感的磁特性。DCR定义为以下电阻公式:

恒流LED驱动器

图8:单通道的模拟模块布局

电源架构对效率的提高

图片 2

图7:电平转换器详图

VOUT = D VINIIN = D IOUT

图1:背光LED驱动系统。图1显示了背光LED驱动器的系统级视图,该驱动器由DC/DC转换器和一个或多个调节电流源组成。此外,基于RGB-LED的背光需要基于温度的反馈控制,这相当于比基于白光LED的背光更高的成本。可以使用多少PCB面积?需要什么功能?系统消耗多少电量?回答这些问题可以指导设计人员选择合适的背光LED驱动器。

固态照明正迅速成为机电工程与设计领域的热点之一。LED实现了灵活性与高效性的结合,这是传统照明技术无法比拟的。LED可以长时间提供稳定可靠的照明,而且采用小型封装,因此正在建筑和舞台照明应用领域得到广泛采用。但是,每种不同的照明应用都有其独特性,不同的市场领域需要具有不同特性的产品。因此,市场中集成电路的专业化趋势不断加强,也导致本来已经种类繁多的产品型号变得更加丰富多彩。可编程混合信号微控制器正得到快速采用,因为单个微控制器能集成脉宽调制器(PWM)、通信接口、放大器、比较器及数据转换器等多种外设。通过将上述外设的完美组合,可实现对功能丰富而强大的可调光降压转换器等器件的控制。用于LED驱动器应用的降压转换器应为电流模式调节器,因为LED是电流模式器件。我们从LEDV-I曲线可以看出,正向电压稍有变化,就会对电流产生较大影响。因此,任何LED驱动器电路的反馈都应视为电流。此外,我们应使用恒定电流,因为制造商会根据正向电流电平设定LED的颜色与强度。上述特性相当重要,因为我们要通过有关特性值来确保系统符合整体规范的要求。典型的LED系统,包括通信接口、不同颜色的LED(每种颜色都代表一个通道)、智能化功能以及每个通道的恒定电流驱动器。通信接口可以为DMX512或DALI,这是两种标准的照明协议,此外也可以为ZigBee或无线USB接口。智能化功能可通过内置模数转换器(ADC)与LED调光外设的微控制器实现。ADC用于监控温度与LED电流等系统变量,完成系统监控与色彩混合任务。驱动器为通道中的每个LED提供恒定电流。驱动器的复杂性与质量决定了驱动器的价格。磁滞降压控制器在微控制器上集成LED驱动器有助于减小整体系统解决方案的尺寸。现在,几乎没有什么解决方案将开关模式电源(SMPS)这样的高功率元件与微控制器的智能化功能完美结合在一起。退而求其次,就是将SMPS的反馈与控制电路完美集成在微控制器中。CY8CLED16EZ-Color器件正好具备上述功能所需的模拟电路。在该设计方案中,SMPS拓扑为电流模式可控磁滞降压转换器架构(见图2)。

磁芯损耗

图7:LP5520,背光RGB LED驱动器。

启动时,通过电感的电流开始上升,直至比较器正输入的电压大于比较器负输入的电压。随后,转换器将作为自由运行的振荡器,电流会在两个层面间充电和放电。ITH_HIGH与ITH_LOW的大小可由并联电阻、RIN与RHYST反馈电阻以及DAC输出电压通过下列等式计算得出。我们可以看到,RHYST值越大,ITH_HIGH与ITH_LOW的差就越小。合上PFET将启动充电过程(如图4a所示),电感器开始充电。比较器可通过测量并联电阻电压来监控电感器电流。当电流达到阈值ITH_HIGH时,就开始进入放电过程(如图4b所示)。在放电阶段,电流通过续流二极管放电。续流二极管保护电路元件免受电感反冲的影响,并且保持LED处于打开状态。LED中的电流超过ITH_LOW阈值后,充电过程再次开始。

概述

图6:调节电流源。

其中,VF为串联LED的正向电压

影响开关模式、DC-DC转换器效率的主要因

图片 3

图片 4

PCOND(MOSFET) (使用平均电流) = IMOSFET(AVG)² RDS(ON) D

发光二极管技术广泛用于为小尺寸液晶显示器中的像素提供照明在电池供电的应用中。由LED发出的白光通过偏振器传输到LCD,在那里可以阻挡或衰减光,并将其发送到RGB滤色器以产生彩色光。

图9:单通道的数字模块布局

由于开关损耗是由开关的非理想状态引起的,很难估算MOSFET和二极管的开关损耗,器件从完全导通到完全关闭或从完全关闭到完全导通需要一定时间,在这个过程中会产生功率损耗。图4所示MOSFET的漏源电压(VDS)和漏源电流(IDS)的关系图可以很好地解释MOSFET在过渡过程中的开关损耗,从上半部分波形可以看出,tSW(ON)和tSW(OFF)期间电压和电流发生瞬变,MOSFET的电容进行充电、放电。图4所示,VDS降到最终导通状态(= ID RDS(ON))之前,满负荷电流(ID)流过MOSFET。相反,关断时,VDS在MOSFET电流下降到零值之前逐渐上升到关断状态的最终值。开关过程中,电压和电流的交叠部分即为造成开关损耗的来源,从图4可以清楚地看到这一点。图4. 开关损耗发生在MOSFET通、断期间的过渡过程开关损耗随着SMPS频率的升高而增大,这一点很容易理解,随着开关频率提高(周期缩短),开关过渡时间所占比例增大,从而增大开关损耗。开关转换过程中,开关时间是占空比的二十分之一对于效率的影响要远远小于开关时间为占空比的十分之一的情况。由于开关损耗和频率有很大的关系,工作在高频时,开关损耗将成为主要的损耗因素。MOSFET的开关损耗(PSW(MOSFET))可以按照图3所示三角波进行估算,公式如下:

通过闭合开关S8并使开关S1-S7断开,可实现增益为1倍的电压转换。电荷泵方法的好处是没有电感器。电感是EMI噪声的,会影响显示器或手机中的无线电性能。

转换器启动后进入充电阶段,直至电感器电流达到ITH_HIGH阈值。电流达到阈值所需的时间称作上升时间(trise),trise取决于输入电压与电感器电流值:

能量转换系统必定存在能耗,虽然实际应用中无法获得100%的转换效率,但是,一个高质量的电源效率可以达到非常高的水平,效率接近95%。绝大多数电源IC的工作效率可以在特定的工作条件下测得,数据资料中给出了这些参数。Maxim的数据资料给出了实际测试得到的数据,其他厂商也会给出实际测量的结果,但我们只能对我们自己的数据担保。图1给出了一个SMPS降压转换器的电路实例,转换效率可以达到97%,即使在轻载时也能保持较高效率。采用什么秘诀才能达到如此高的效率?我们最好从了解SMPS损耗的公共问题开始,开关电源的损耗大部分来自开关器件(MOSFET和二极管),另外小部分损耗来自电感和电容。但是,如果使用非常廉价的电感和电容(具有较高电阻),将会导致损耗明显增大。选择IC时,需要考虑控制器的架构和内部元件,以期获得高效指标。例如,图1采用了多种方法来降低损耗,其中包括:同步整流,芯片内部集成低导通电阻的MOSFET,低静态电流和跳脉冲控制模式。我们将在本文展开讨论这些措施带来的好处。图1. MAX1556降压转换器集成了低导通电阻的MOSFET,采用同步整流,可以达到95%的转换效率,效率曲线如图所示。

在以前的条件下,增益为1.5倍,无论VLED如何,输入功率都等于333mW。

以上各图显示了如何配置EZ-Color模拟与数字模块,以实施降压转换器。COMP_BUF模块路由比较器总线到数字段,随后它可路由到电源电路系统,不过不是直接路由到控制电路,而是与16位PWM数字模块的输出做AND操作,从而实现调光功能。图8和图9中的3个位置样本可放置在CY8CLED16部件上,从而实现3通道可调光输出的复合系统。利用3个降压转换器,每个通道都能通过高精度照明信号调制(PrISM)调光,或利用PWM,我们就能控制3通道LED系统的色彩。用8位微控制器完成色彩混合相当复杂,不过有些集成电路公司尝试了这种做法并取得了成功。PSoCExpress等软件工具具备预编写、预验证的色彩混合代码,使开发照明设计变得极其简单。PSoCExpress是一款支持用户界面功能的设计创建工具,也支持系统外设编码,可以通过拖放实现工作,并在GUI环境中连接至驱动程序。所生成的项目文件兼容于所有赛普拉斯的EZ-Color器件。应该采用哪种调光分辨率?您可能已经注意到了,本项目中采用了16位分辨率调光,之所以这样做,是因为在光照强度较低的情况下,我们需要16位来维持高精度的色彩控制。如果强度为100%,那么精确匹配就仅需要8位的分辨率,如强度为1%,则分辨率应为14.6位。EZ-Color中,16位分辨率的PWM调光频率为732Hz,远远高于肉眼所能看到的频率。PWM模块时钟频率设定为48MHz,就能获得这种调光频率。本文小结我们采用赛普拉斯的EZ-Color等混合信号微控制器控制LED照明系统,因为这种微控制器集成了ASIC实施所需的大部分功能。通过采用磁滞降压转换器,EZ-Color能提供低成本的SMPS拓扑,可用恒定电流驱动LED。集成式混合信号解决方案非常适合照明设计,不仅能降低元件成本,而且还能缩短设计周期。赛普拉斯的EZ-Color集成了SMPS控制、智能化色彩混合功能与DMX512接口,使其成为多种LED照明应用设计的便捷选择。(end)

PL(DCR) = (IP³ - IV³)/3 DCR

只有当VOUT-VLED足够高以保持传输元件不饱和时,才成立。事实上,电流源需要跨越它们的最小电压,称为净空电压VHR,以便通过LED提供所需的调节电流。净空电压通常用电阻建模:

图5:电流误差详图

SMPS的控制架构是影响开关电源效率的关键因素之一。这一点我们已经在同步整流架构中讨论过,由于采用低导通电阻的MOSFET取代了功耗较大的开关二极管,可有效改善效率指标。另一种重要的控制架构是针对轻载工作或较宽的负载范围设计的,即跳脉冲模式,也称为脉冲频率调制(PFM)。与单纯的PWM开关操作(在重载和轻载时均采用固定的开关频率)不同,跳脉冲模式下转换器工作在跳跃的开关周期,可以节省不必要的开关操作,进而提高效率。跳脉冲模式下,在一段较长时间内电感放电,将能量从电感传递给负载,以维持输出电压。当然,随着负载吸收电流,输出电压也会跌落。当电压跌落到设置门限时,将开启一个新的开关周期,为电感充电并补充输出电压。需要注意的是跳脉冲模式会产生与负载相关的输出噪声,这些噪声由于分布在不同频率(与固定频率的PWM控制架构不同),很难滤除。先进的SMPS IC会合理利用两者的优势:重载时采用恒定PWM频率;轻载时采用跳脉冲模式以提高效率,图1所示IC即提供了这样的工作模式。当负载增加到一个较高的有效值时,跳脉冲波形将转换到固定PWM,在标称负载下噪声很容易滤除。在整个工作范围内,器件根据需要选择跳脉冲模式和PWM模式,保持整体的最高效率(图8)。图8中的曲线D、E、F所示效率曲线在固定PWM模式下,轻载时效率较低,但在重载时能够提供很高的转换效率(高达98%)。如果设置在轻载下保持固定PWM工作模式,IC将不会按照负载情况更改工作模式。这种情况下能够使纹波保持在固定频率,但浪费了一定功率。重载时,维持PWM开关操作所需的额外功率很小,远远低于输出功率。另一方面,跳脉冲空闲模式下的效率曲线(图8中的A、B、C)能够在轻载时保持在较高水平,因为开关只在负载需要时开启。对7V输入曲线,在1mA负载的空闲模式下能够获得高于60%的效率。图8. 降压转换器在PWM和空闲(跳脉冲)模式下效率曲线,注意:轻载时,空闲模式下的效率高于PWM模式。

在具有单节锂离子源的便携式应用中,电压降的总和白色,绿色或蓝色LED和电流源可以低于或高于电池电压。这意味着,虽然红色LED可以直接由单节锂离子电池供电,但白色,蓝色或绿色LED需要电池电压有时会提升。

电平转换电路如图7所示,当栅极Q1的逻辑电平为高时,栅极Q3通过分压器打开;栅极Q4短接至VIN将关闭栅极Q3。当栅极Q1的逻辑电平为低时,分压器中无电流通过,将栅极Q2连接至VIN,此时栅极Q4短接至地面,并打开PFET。这样,输入为高时,开关关闭,输入为低时,开关打开,这就说明了EZ-Color器件内置比较器的输出为什么会出现反相区。只要输入电压不超过晶体管Q2与Q4的VGS(MAX)值,如图7所示的电平转换电路就能正常工作。如果我们从VIN到源极Q2之间增加齐纳二极管与电容器,再在齐纳二极管的阳极至接地之间采用偏置电路,那么该电路就可适用于较大的输入范围。

上式给出了SMPS中MOSFET传导损耗的近似值,但它只作为电路损耗的估算值,因为电流线性上升时所产生的功耗大于由平均电流计算得到的功耗。对于峰值电流,更准确的计算方法是对电流峰值和谷值(图3中的IV和IP)之间的电流波形的平方进行积分得到估算值。图3. 典型的降压型转换器的MOSFET电流波形,用于估算MOSFET的传导损耗。下式给出了更准确的估算损耗的方法,利用IP和IV之间电流波形I²的积分替代简单的I²项。 PCOND(MOSFET) = [(IP³ - IV³)/3] RDS(ON) D = [(IP³ - IV³)/3] RDS(ON) VOUT/VIN 式中,IP和IV分别对应于电流波形的峰值和谷值,如图3所示。MOSFET电流从IV线性上升到IP,例如:如果IV为0.25A,IP为1.75A,RDS(ON)为0.1Ω,VOUT为VIN/2 (D = 0.5),基于平均电流(1A)的计算结果为: